Alu repeat analysis in the complete human genome: trends and variations with respect to genomic composition

نویسندگان

  • Deepak Grover
  • Mitali Mukerji
  • Pankaj Bhatnagar
  • Krishnamoorthy Kannan
  • Samir K. Brahmachari
چکیده

MOTIVATION Transposon-derived Alu repeats are exclusively associated with primate genomes. They have gained considerable importance in the recent times with evidence of their involvement in various aspects of gene regulation, e.g. alternative splicing, nucleosome positioning, CpG methylation, binding sites for transcription factors and hormone receptors, etc. The objective of this study is to investigate the factors that influence the distribution of Alu repeat elements in the human genome. Such analysis is expected to yield insights into various aspects of gene regulation in primates. RESULTS Analysis of Alu repeat distribution for the human genome build 32 (released in January 2003) reveals that they occupy nearly one-tenth portion of the sequenced regions. Huge variations in Alu frequencies were seen across the genome with chromosome 19 being the most and chromosome Y being the least Alu dense chromosomes. The highlights of the analysis are as follows: (1). three-fourth of the total genes in the genome are associated with Alus. (2). Alu density is higher in genes as compared with intergenic regions in all the chromosomes except 19 and 22. (3). Alu density in human genome is highly correlated with GC content, gene density and intron density with GC content being major deterministic factor compared with other two. (4). Alu densities were correlated more with gene density than intron density indicating the insertion of Alus in untranslated regions of exons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative bioinformatics analysis of a wild diploid Gossypium with two cultivated allotetraploid species

Background: Gossypium thurberi is a wild diploid species that has been used to improve cultivated allotetraploid cotton. G. thurberi belongs to D genome, which is an important wild bio-source for the cotton breeding and genetic research. To a certain degree, chloroplast DNA sequence information are a versatile tool for species identification and phylogenetic implications in plants. Different ch...

متن کامل

Whole-genome analysis of Alu repeat elements reveals complex evolutionary history.

Alu repeats are the most abundant family of repeats in the human genome, with over 1 million copies comprising 10% of the genome. They have been implicated in human genetic disease and in the enrichment of gene-rich segmental duplications in the human genome, and they form a rich fossil record of primate and human history. Alu repeat elements are believed to have arisen from the replication of ...

متن کامل

Alu DNA Polymorphism of Human Tissue Plasminogen Activator (tPA) Gene in Diabetic Jordanian Patients Patients

Background: Hypercoagulability and hypofibrinolysis are among the symptoms exhibited by diabetic patients. Our study aimed to address the polymorphic nature of Alu DNA fragment in the human tissue plasminogen activator gene within diabetes mellitus (DM) Jordanian patients. Methods: Genomic DNA was isolated from 76 DM patients and 60 non-diabetic Jordanian individuals, and the Alu fragment was a...

متن کامل

Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their contribution to human genomic diversity.

We have utilized computational biology to screen GenBank for the presence of recently integrated Ya5 and Yb8 Alu family members. Our analysis identified 2640 Ya5 Alu family members and 1852 Yb8 Alu family members from the draft sequence of the human genome. We selected a set of 475 of these elements for detailed analyses. Analysis of the DNA sequences from the individual Alu elements revealed a...

متن کامل

O-27: Genome Instabilities in Preimplantation Development Leading to Genetic Variation between Tissues of Normal Human Fetuses

Background: Origin of midlife copy number variations (CNVs) between tissues in non-genetic diseases is unknown. Such genomic differences caused by post-zygotic events. They might either happen during the life or due to prevalent mosaicism in preimplantation stage. We aim to explore fetal mosaicism and its origins. Materials and Methods: Two apparently normal fetuses were achieved following the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 20 6  شماره 

صفحات  -

تاریخ انتشار 2004